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A B S T R A C T

Mass media messaging is central for health communication. The success of these efforts, however, depends on
whether health messages resonate with their target audiences. Here, we used electroencephalography (EEG) to
capture brain responses of young adults - an important target group for alcohol prevention - while they viewed
real-life video messages of varying perceived message effectiveness about risky alcohol use. We found that strong
messages, which were rated to be more effective, prompted enhanced inter-subject correlation (ISC). In further
analyses, we linked ISC to subsequent drinking behavior change and used time-resolved EEG-ISC to model
functional neuroimaging data (fMRI) of an independent audience. The EEG measure was not only related to
sensory-perceptual brain regions, but also to regions previously related to successful messaging, i.e., cortical
midline regions and the insula. The findings suggest EEG-ISC as a marker for audience engagement and effec-
tiveness of naturalistic health messages, which could quantify the impact of mass communication within the
brains of small target audiences.
1. Introduction

Mass media health campaigns are essential to promote public health.
By using mass media, health agencies can reach millions and deliver
messages about health risks and desired target behaviors (Rice and Atkin,
2013; Wakefield et al., 2010). A health issue for which this strategy is
common is risky drinking, a significant problem among young adults and
college students in particular (Karam et al., 2007; Slutske, 2005; Wicki
et al., 2010). Typically, engaging audiovisual formats and mini-stories
are used to make messages salient and increase personal risk percep-
tion, but many questions remain about how these messages affect re-
cipients. Neuroimaging is particularly well suited to examine the
reception process (Falk et al., 2015, 2016; Falk, 2010; Huskey et al.,
2017; Wang et al., 2013; Weber et al., 2014). A promising approach to
examine and quantify how audiences respond to dynamic real-life health
messages, as for example videos, is the inter-subject correlation analysis
(ISC). In brief, ISC measures the consistency of message-evoked brain
responses across recipients, which yields a continuous, nonverbal mea-
sure of collective engagement that is well suited to quantify the impact of
mass media messages at the neural level (Hasson et al., 2004, 2010,
2012).

Previous work using this approach, mostly within fMRI research,
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demonstrated that manipulations of attentional and semantic variables
influence the level of ISC across messaging contexts ranging from polit-
ical rhetoric, to interpersonal communication, and to movie viewing
(Hasson et al., 2008, 2012; Lahnakoski et al., 2014; Schm€alzle et al.,
2015; Silbert et al., 2014; Stephens et al., 2010). For example, using
fMRI, Schm€alzle et al. (2015) revealed enhanced ISC to political speeches
which were perceived as powerful and engaging. Within the context of
health and risk communication, two recent fMRI studies underscore the
potential of the ISC approach for audience response measurement: The
first study examined the reception of a 30-min documentary on the
outbreak of the H1N1 swine flu virus that aired on national TV during the
pandemic. The study revealed that the strength of fMRI-ISC in the
anterior cingulate cortex depended on viewers’ level of risk perception
(Schm€alzle et al., 2013). The second study showed that strength of ISC is
related to the effectiveness of health messages (Imhof et al., 2017).
Specifically, comparing fMRI-ISC during perception of strong and weak
health messages, as defined by perceived message effectiveness in an
independent sample, revealed enhanced ISC to strong messages in the
dorsomedial prefrontal cortex, precuneus, and the insulae. These studies
illustrate the potential of an ISC-based neuroimaging approach to assess
the reception of health messages with a focus on audience-wide re-
sponses that are critical for successful mass communication.
x 36, 78457, Konstanz, Germany.

anuary 2020

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ease audience brain coupling, NeuroImage, https://doi.org/10.1016/

mailto:Martin.Imhof@uni-konstanz.de
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.116527
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.116527


M.A. Imhof et al. NeuroImage xxx (xxxx) xxx
Here, we were interested in determining whether electroencepha-
lography (EEG), for which a comparable ISC-based approach has been
proposed (Cohen et al., 2017; Cohen and Parra, 2016; Dmochowski et al.,
2012, 2014; Parra et al., 2018), can serve as a measure of audience
engagement for health messages. One of the most important advantages
of EEG is its temporal resolution, which ranges on the order of milli-
seconds. Thus, it complements hemodynamic measures, which offer good
spatial but limited temporal resolution. Such a high temporal resolution
is promising for characterizing the reception process of fast-paced au-
diovisual prevention messages, which often last only half a minute or
less. Further benefits of EEG are its more accessible nature and relative
cost-effectiveness. These characteristics enhance the scalability and thus
the translational potential of integrating neuroscientific methods into
message pre-testing, for example during the formative stages of a health
campaign. Indeed, recent EEG studies in classroom settings, the cinema,
or during music consumption illustrate this potential (Barnett and Cerf,
2017; Cohen et al., 2018; Dikker et al., 2017; Madsen et al., 2019;
Poulsen et al., 2017).

Themain goal of the present study was to determine whether EEG-ISC
can robustly differentiate between strong and weak health messages and
thus may serve as a possible marker of successful messaging. To obtain a
sample of strong and weak messages, we screened German-speaking
prevention campaigns on risky alcohol use. The video health messages
obtained from this work were screened in terms of perceived message
effectiveness, a widely used measure in health communication (PME;
Dillard et al., 2007; Dillard and Peck, 2000). The messages revealed
pronounced differences in perceived message effectiveness as well as
other self-report measures of message characteristics (for details, please
see section 2.2 or Imhof et al., 2017). Based on our previous work, we
selected ten of the most and ten of the least effective video health mes-
sages to form strong and weak health message categories respectively.
Dense sensor EEG was continuously recorded while participants viewed
the messages. We then identified correlated components in the EEG
signal to quantify the strength of ISC across the audience (Dmochowski
et al., 2012; Parra et al., 2018) and to compare the strength of inter-brain
coupling during reception of strong and weak messages. To determine
the robustness of the findings, viewing conditions were varied between a
free viewing task that resembled real-life viewing conditions and a rating
task in which participants evaluated each message’s effectiveness. Pre-
vious work suggested ISC as a proximal marker of audience engagement,
due to attentional or relevance-based factors (Cohen et al., 2017; Dmo-
chowski et al., 2012; Hasson et al., 2012; Imhof et al., 2017; Ki et al.,
2016; Schm€alzle et al., 2013). In addition, theories of media effects and
persuasion assume that selective attention and elaborated processing of a
message is crucial for changing attitudes or behavior – and can be
brought out for instance by issue involvement, emotion, or personal
relevance (e.g., Greenwald and Leavitt, 1984; McGuire, 2013; Petty et al.,
2009; Petty and Cacioppo, 1986). Accordingly, we hypothesized that the
degree to which recipients’ brains respond similarly should be enhanced
for strong as compared to weak health messages.

In a second line of analyses, we used both the acquired EEG-ISC and
secondary fMRI data to identify the possible origin of the identified
correlated components (see Dmochowski et al., 2014 - for a similar
approach). In this analysis, fluctuations in ISC measured using EEG over
the course of watching the health messages are used as predictors for
functional imaging data which was collected in a second, independent
sample viewing the same messages. One goal of this analysis was to
identify which correlated EEG components show ISC primarily driven by
visual-auditory stimulus characteristics. In addition, we assumed that
distinct components can be related to the engagement of brain regions
involved in personal relevance, affect and attentional processes, which
are thought to be critical for effective health communication (e.g., Petty
et al., 2009; Schmitz and Johnson, 2007). Accordingly, a further goal of
this analysis was to test the hypothesis that a subset of correlated com-
ponents has neural generators in higher-order cortical midline regions
and the insula, which have been previously linked to affective- and
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self-relevant processing of health-related messages (e.g., Imhof et al.,
2017; Schm€alzle et al., 2013). Moreover, message-evoked brain re-
sponses have been used to predict subsequent behavior change, such as
smoking cessation or sunscreen use (Chua et al., 2009, 2011; Cooper
et al., 2015; Falk et al., 2010, 2011). Thus, we additionally assessed
changes in participants’ drinking behavior over a four-week follow-up
period. Using this data, we explored the hypothesis that EEG-ISC during
health message exposure as well as self-report measures of risk percep-
tions and intentions to change behavior are related to changes in
drinking behavior.

2. Material and methods

2.1. Participants

Thirty-two participants were recruited at the local university (16 fe-
male; between 18 and 34 years old, MAge ¼ 22.69, SD ¼ 4.32). All par-
ticipants had normal hearing, normal or corrected-to-normal vision, and
no history of neurological or psychological diseases. One participant did
not complete the four-week follow-up questionnaire. To be eligible for
the study, participants had to report drinking amounts of at least four
alcoholic beverages per week. Five additional participants were excluded
due to technical failure or not fulfilling inclusion criteria (e.g., minimal
drinking behavior or participation in earlier studies using a similar
stimulus set). Excluded participants were not analyzed and immediately
replaced to allow the full pre-determined sample size. We assessed the
participants’ drinking behavior using the AUDIT alcohol screening
questionnaire (range: 0 – 40; Babor et al., 2001). All participants
exhibited risky drinking patterns (MAudit ¼ 11.31; SD ¼ 4.61; range:
5 – 24) according to a cut off recommendation for the German population
(Rumpf et al., 2002). Participants received either course credit or mon-
etary reimbursement. Written informed consent was obtained according
to the Declaration of Helsinki and all procedures were approved by the
ethics committee of the University of Konstanz.

2.2. Stimulus material

A sample offifty German-speaking video healthmessages against risky
alcohol use served as database from which 10 of the most and 10 of the
least effective messages were selected to form a strong and a weak mes-
sage category. Length of the messages varied between 20 and 110 s and
did not differ between the two categories (MStrong ¼ 58.5 s, SD ¼ 25.93;
MWeak¼ 49.5 s, SD¼ 25.00; t(18)¼ 0.43, n.s., independent samples t-test,
two-sided). Thesemessages are the same as in our previous research using
fMRI and a more detailed description can be found in Imhof et al. (2017).
The video health messages obtained from this work were screened in
terms of perceived message effectiveness (PME; Dillard et al., 2007; Dil-
lard and Peck, 2000). The messages revealed pronounced differences in
the previous work with respect to PME which was probed using
single-item measures as well as questionnaires on ad effectiveness (Falk
et al., 2012), perceived argument strength (Zhao et al., 2011), and
perceived message sensation value (Palmgreen et al., 2002). As expected,
assessing the current test audience’s single-item evaluation of perceived
message effectiveness confirmed the distinction into strong as
compared to weak videos (MStrong ¼ 4.88, SD ¼ 0.98;MWeak ¼ 2.18, SD ¼
0.46; t(18)¼ 7.89, p< .0001; d¼ 3.53, calculated using pooled SD; 95%-CI
¼ 1.98 – 3.42; independent samples t-test, two-sided). Furthermore, the
single-item PME ratings collected within the current EEG test audience
were highly correlated to the ratings collected within the previous fMRI
audience (Spearman’s rank correlation coefficient ρ ¼ 0.96, p < .0001).

2.3. Stimulus feature extraction and comparison across video categories

In order to assess whether the two categories of video healthmessages
differed with regard to physical features, we assessed changes in video
luminance, optical flow and sound envelope for each of the videos.
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Analyses were conducted using the Computer Vision System Toolbox
implemented in MATLAB. All videos were converted to greyscale by
calculating the weighted sum of the R, G, and B components of each pixel.
Then, stimulus features were extracted for each video frame: Luminance
changes were extracted by calculating the squared difference in pixel
intensity from one frame to the next and then averaged across pixels.
Optical flow was computed using the Horn-Schunck method as imple-
mented in the MATLAB Computer Vision System Toolbox. For each
frame, the average across pixels of the magnitude of the optical flow
vectors was calculated. As in Dmochowski et al. (2018), the sound en-
velope was computed as the squared magnitude of the Hilbert transform
of the soundtrack accompanying the respective video health message.
The extracted envelope was then downsampled to the video frame rate.

Tomatch the resolutionof the EEG-ISC, all stimulus feature timecourses
were smoothed using a 2 s Gaussian window and resampled to match the
resolution of the ISC time course (2 s sliding window, 0.25 s increments)
and z-scored. Finally, to assess whether frame-to-frame fluctuations of the
physical stimulus features differ across video categories and to quantify the
change over time for each stimulus feature, we compared the per-video
averages (across samples) of the half-wave rectified time course of the
first derivative, i.e., the absolute value of the derivative at a given sample
point. Inorder toperforma sensitive comparisonacross videocategorieswe
compared the measures across categories using two-sided, uncorrected
independent samples t-tests. There were no differences across video cate-
gories (p ¼ 0.68 - 0.37, t(18) ¼ 0.42 - 0.93). Box plots visualizing the
average change of stimulus features as well as exemplary excerpts of the
stimulus feature time courses for luminance changes, optical flow and
sound envelope are shown in Supplementary Figure SM 1.

2.4. Procedure

Prior to the experiment (t1), we assessed EEG eligibility and collected
alcohol-related self-report measures of drinking behavior and risk per-
ceptions. In the main session (t2), health messages were presented in a
pseudo-randomized order, alternating between strong and weak exem-
plars. Videos were presented twice either in “forward” (A-B-C-…) or
“reversed” order (…-C-B-A). Presentation software (Neurobehavioral
Systems, Inc.) was used to present the video health messages and to
synchronize EEG acquisition. Videos were shown with a resolution
of 800 * 450 pixels on a 2700 flat screen monitor, located approximately
105 cm in front of the participant (~7.64� visual angle vertically). Sound
was delivered via speakers inside the shielded chamber. A 3 s video
fixation was presented prior to each health message. In the “free viewing”
block, participants were asked to attentively view the health messages,
without any further task instruction. After each video, a blank screen (ITI
¼ 5 s) was presented. In the “rating task” block, participants were asked
to evaluate the health messages using a single-item measure of perceived
message effectiveness on a seven-point scale. After logging the rating, a
blank screen (ITI ¼ 3 s) was presented. There was no difference for
average rating time across health message categories (MStrong ¼ 3.44 s,
SD¼ 0.37;MWeak¼ 3.65 s, SD¼ 0.34; t(18)¼�1.38, p¼ 0.183, n.s., two-
sided independent samples t-test). Order of task (free viewing vs. rating
task) as well as the order in which the video health messages were pre-
sented (forward vs. reversed) was counterbalanced across participants.
Overall, EEG measurements lasted for approximately 50 minutes with a
short pause during the runs to allow for refreshment and re-measuring of
electrode impedances. Self-reported risk perceptions related to alcohol
were collected after the EEG session (t2) and, using an online question-
naire, four weeks later (t3). Additionally, in the follow up questionnaire,
we again assessed drinking behavior and risk perceptions using the same
items from the baseline measure at t1. With the exception of one, all
participants completed the four week follow up questionnaire (average
interval between t2 and t3: 29 days, SD ¼ 3.4). As in previous work, risk
behavior and perceptions concerning alcohol use were assessed using
self-report, i.e., detailed alcohol consumption, intentions, worries,
perceived pressure to change behavior or perceived health threat (Imhof
3

et al., 2017; Renner, 2004; Renner and Reuter, 2012; Schm€alzle et al.,
2013).

2.5. EEG acquisition and preprocessing

EEG and EOG scalp potential fields were measured with a 256-chan-
nel geodesic sensor net (EGI: Electrical Geodesics Inc., Eugene, OR, USA),
sampled at 1000 Hz and on-line band-pass filtered from 0.01 to 400 Hz
using EGI Geodesic amplifiers and Netstation acquisition software.
Electrode impedance was kept below 40 kΩ, as recommended by EGI
guidelines for this type of EEG amplifier. Data was recorded continuously
with the vertex sensor (Cz) as reference electrode.

Data segments corresponding to the duration of each video health
message were extracted using the open source signal processing toolbox
FieldTrip (Oostenveld et al., 2011). Offline preprocessing of EEG and
EOG data was conducted based on prior work (e.g., Cohen and Parra,
2016; Dmochowski et al., 2012; Parra et al., 2018). Specifically, EEG and
EOG data were high-pass (0.5 Hz, Butterworth 6th order; for-
ward/reverse) and notch filtered (50 Hz, Butterworth 4th order; for-
ward/reverse). Eye movement artifacts were corrected by linearly
regressing the EOG channels (EGI channels: 1, 10, 18, 25, 31, 32, 37, 46,
54, 226, 230, 234, 238, 241, 244, 248 & 252) from the EEG channels.
Outlier samples were identified in each channel (magnitude exceeded
four times the distance between the 25th and the 75th percentile of the
signal). Samples 40 ms before and after outliers were replaced with zero
values. Electrode channels with high variance (magnitude exceeded
three times the distance between 25th and 75th percentile) were identi-
fied and replaced with zero values. These artifact rejection procedures
were performed to discount outlier samples and channels in the subse-
quent calculation of covariance matrices and were used due to the
sensitivity to outliers of the covariance matrices used in the ISC
computation (see also Cohen and Parra, 2016; Dmochowski et al., 2012;
Parra et al., 2018).

2.6. EEG-ISC analysis

EEG-ISC analysis was conducted based on the open source code
developed by Parra and colleagues (available at http://www.parralab
.org/isc/). Specifically, maximally correlated components were calcu-
lated, which represent linear combinations of scalp sensors revealing
maximal correlation across viewers. In contrast to a voxel-by-voxel
approach which is often used in fMRI-ISC analyses, the correlated com-
ponents are calculated via signal decomposition. This spatial filtering
enables to detect large-scale activity patterns which otherwise could
remain unnoticed using a sensor-by-sensor approach (Dmochowski et al.,
2012). To obtain unbiased estimates, correlated components were
calculated using within- and between-subject covariance matrices that
were averaged across all videos and viewings. Based on inspection of the
eigenvalue distribution (Supplementary Figure SM 2) and previous work
(e.g., Cohen and Parra, 2016; Dmochowski et al., 2012), we extracted
four components that captured most ISC. As in previous work, we visu-
alize the spatial distribution of the components (Fig. 2a) by calculating
the “forward models”, representing the covariance between a compo-
nent’s activity and the activity at each sensor (Cohen and Parra, 2016;
Dmochowski et al., 2012; Haufe et al., 2014; Parra et al., 2005). To
analyze experimental effects, EEG-ISC - as captured by the four compo-
nents - was extracted for each video, the two task conditions and each
participant, separately. Subsequently, ISC was averaged across strong
and weak videos. Two-sided, paired samples t-tests were used to assess
the main hypothesis of enhanced EEG-ISC for strong compared to weak
health messages (Fig. 2b). Bonferroni correction was used to account for
multiple comparisons. Confidence intervals as well as effect sizes are
reported in Supplementary Table SR 1. For paired samples t-tests, re-
ported effect sizes represent Cohen’s dz, calculated as the standardized
mean difference effect size (Lakens, 2013).

In order to assess possible task and order effects we submitted the

http://www.parralab.org/isc/
http://www.parralab.org/isc/
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EEG-ISC values for each component to four separate mixed repeated
measures analysis of variance (ANOVA). Beside the within-subjects fac-
tor “Video Category” (strong/weak), we included the within-subjects
factor “Condition” (rating task/free viewing) and the between-subjects
factor “Order” (rating task followed by free viewing/free viewing fol-
lowed by rating task) to test for possible influences due to the rating task
and/or repeated viewings. Statistical analyses were conducted using
jamovi software version 1.0.4.0 (https://www.jamovi.org/), R version
3.6.1 (https://www.r-project.org/), and the R packages “afex” (https://
cran.r-project.org/package¼afex) and “emmeans” (https://cran.r-projec
t.org/package¼emmeans).
2.7. Relating EEG-ISC to neural activation in independent functional
neuroimaging data

In a second stream of analyses we calculated the EEG-ISC over time
for each video and each of the components (2 s sliding window, 0.25 s
increments). These ISC time courses were then used to predict neural
activity measured in a second, independent target audience using fMRI.
The fMRI data was taken from previous work in which an additional 32
participants (16 females, MAge ¼ 23.41; SD ¼ 2.96) viewed the same
alcohol prevention videos while neural data was acquired using a
Siemens Skyra 3T MRI System (for details, see Imhof et al., 2017). Blood
oxygenation level-dependent (BOLD) signal was acquired using a
T2*-weighted Fast Field Echo-Echo Planar Imaging sequence (TR¼ 2.5 s,
TE ¼ 30 ms, ascending-interleaved slice order, 36 axial slices; no gap;
FOV ¼ 240 � 240 mm; 3 � 3 � 3.5 mm voxel size). 560 functional
volumes were acquired during the audio-visual stimulation and scanning
lasted approximately 45 min. Structural images were obtained using a
T1-weighted scan (1 � 1 � 1 mm voxel size, FOV ¼ 256 � 256 mm, 192
sagittal slices).

Neuroimaging data was preprocessed and analyzed using the Brain-
Voyager 20.4 software package (BrainInnovation). Functional data was
corrected for slice scanning time (sinc-interpolation) and corrected for
3D Motion (trilinear/sinc-interpolation). The functional data was
spatially smoothed (FWHM ¼ 6 mm) and temporally filtered to remove
linear trends and low-frequency shifts using a high pass-GLM-Fourier
filter (up to 6 cycles). Functional and anatomical volumes were
normalized into the Talairach coordinate system (Talairach and
Fig. 1. Conceptual overview of the EEG‑‑ISC informed fMRI analysis. Brain respo
health messages. Temporally highly-resolved EEG‑ISC time courses are extracted for
EEG sample are then used as parametric regressors in a general linear model design mo
design was obtained during message reception of the same video health messages w
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Tournoux, 1988). As visualized in Fig. 1, EEG-ISC time courses were
extracted separately for each component and the first viewing of each
video. For each of the four components, EEG-ISC time courses corre-
sponding to the first viewing of each of the 20 videos were extracted
separately. Then, these 80 time courses were each resampled to a 1 s
resolution and z-scored. For each component, the time courses of the 20
single videos were concatenated to serve as one parametric predictor in
four separate general linear model (GLM) analyses. Periods of fixation
and inter-stimulus intervals were modeled as zero estimates and included
in the parametric regressors. Within each of the four multi-subject
random effects GLM analyses we included the respective parametric re-
gressor convolved with a default two gamma-HRF as implemented in
BrainVoyager (time to response peak: 6 s, no shift) and default treatment
for temporal autocorrelation (second-order autoregressive). Lastly, con-
trasts of parameter estimates were constructed as null hypothesis tests of
the parametric regressor against zero (two-sided). To correct for multiple
comparisons, we applied FWE correction (p < 0.05, whole brain) and a
cluster threshold of 25 mm2. All results shown in Figs. 3 and 4 are
overlaid onto the left hemisphere of a Talairach-normalized, anatomical
rendering of the Colin27 Average Brain (Holmes et al., 1998). Right
hemisphere results are very similar and are visualized in Supplementary
Figure SR 2.

To quantify the overlap between the current fMRI-GLM results and
previous fMRI-ISC findings, we created statistical maps that include the
voxels which revealed a significant relationship to the parametric re-
gressor of the respective correlated EEG component (as shown in Fig. 3/
Fig. 4a). Then, we combined the statistical maps previously published in
Imhof et al. (2017), which include all voxels that revealed significant
fMRI-ISC during either the strong or the weak messages (Fig. 4b). Finally,
we used these maps to determine the degree to which the voxels found in
the EEG-ISC informed fMRI analysis revealed overlap with the combined
fMRI-ISC map (Fig. 4c).
2.8. Assessing changes in drinking behavior and their relations to EEG-ISC

We determined changes in alcohol consumption and risk perception
following the exposure to the health messages using two-sided, paired
samples t-tests. Furthermore, multiple linear regression analysis was used
to explore the ability of EEG-ISC to predict changes in subsequent
nses of two independent audiences are obtained during watching real-life video
maximally correlated EEG components. The ISC time courses obtained from the
deling the BOLD signal within the whole brain. The BOLD signal modeled in this
ithin a second, independent sample of participants.

https://www.jamovi.org/
https://www.r-project.org/
https://cran.r-project.org/package&equals;afex
https://cran.r-project.org/package&equals;afex
https://cran.r-project.org/package&equals;afex
https://cran.r-project.org/package&equals;emmeans
https://cran.r-project.org/package&equals;emmeans
https://cran.r-project.org/package&equals;emmeans
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drinking behavior. In two linear regression models, amount and fre-
quency of drinking at follow up were dependent variables. The corre-
sponding drinking measure at baseline, self-reported risk perceptions
(worries, need to act, intentions and perceived health threat), as well as
level of EEG-ISC averaged across the 10 strong health messages for each
of the components, were entered as independent variables (for the full
Fig. 2. Maximally correlated EEG components reveal differences in ISC during t
strength to which each sensor contributes to the correlated component. The maps reve
that is, the forward models of the maximally correlated components C1 to C4 (blue to
average EEG‑ISC for each component, separated by the message categories Strong
participants. Participants exhibiting a reversed pattern of results (ISCWeak > ISCStron

differences when assessing the data on a more fine-grained level, i.e., during free vi
Box plots show ISC for each component as a function of message category and viewing
edges represent the 25th & 75th percentiles and outliers are marked by a red cross. Fo
video categories are shown for each experimental cell (* p < .05, ** p < .01, *** p
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model description, see Supplementary Table SR 6). We used R version
3.6.1 to create the multiple linear regression models and subsequently
computed hierarchical linear regression to infer the amount of addi-
tionally explained variance for the predictors-of-interest as reported in
Table 1.
he viewing of alcohol prevention videos. a) Topographical maps visualize the
al the contribution by showing interpolated magnitudes of the scalp projections,
yellow - arbitrary units, polarity of projections normalized). b) Box plots show
(red) and Weak (blue). Connecting lines visualize paired measures for all 32
g) are colored red. c) Stability of EEG‑ISC differences is revealed by replicable
ewing and a rating task.
condition. Colored dots within box represent the mean, center lines the median,
r descriptive purposes, significance of paired samples t‑tests comparing the two
< .001; Bonferroni corrected).
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3. Results

3.1. Strong health messages prompt enhanced audience brain coupling

To examine the degree of inter-brain coupling within the audience
prompted by strong compared to weak health messages, we exposed a
test audience of 32 viewers to video health messages while measuring
high-density EEG. In the current work, the video health messages were
evaluated regarding perceived message effectiveness (PME; Dillard et al.,
2007; Dillard and Peck, 2000) and other message-relevant constructs in
previous work (Imhof et al., 2017; see section 2.2 for details). Differences
in effectiveness were confirmed in the present sample. (MStrong ¼ 4.88,
SD ¼ 0.98; MWeak ¼ 2.18, SD ¼ 0.46; t(18) ¼ 7.89, p < .0001; d ¼ 3.53,
independent samples t-test, two-sided).

In order to calculate inter-subject correlation (ISC) across viewers, we
extracted the four most correlated components of the EEG data. Fig. 2a
visualizes which sensors contribute to the correlated components and re-
veals distinct topographies for each component using their forward pro-
jections. To confirm the hypothesis that strong compared to weak health
messages prompt enhanced inter-brain coupling across the audience, we
submitted the level of ISC to paired samples t-tests, which confirmed the
hypothesis for all identified components (C1: t(31) ¼ 18.18, d ¼ 3.21; C2:
t(31) ¼ 4.14, d ¼ 0.73; C3: t(31) ¼ 13.94, d ¼ 2.46; C4: t(31) ¼ 9.15, d ¼
1.62; all p’s< 0.001, two-sided, Bonferroni corrected; for details, please see
Supplementary Table SR 1). As illustrated in Fig. 2b, the enhancement of
ISC for stronghealthmessageswas highly consistent across viewers, i.e., the
pattern was expressed in every audience member for C1 and C3 (32 out of
32), and in 29 out of 32 participants for C4. Although still significant, the
effect appeared less consistent for C2 with 24 out of 32 participants.
Moreover, when computing the correlated components separately for each
of the video categories and viewings, the spatial topographies of the com-
ponents were stable across viewings but revealed seemingly more hetero-
geneity forweakmessages (see Supplementary Figure SR 1). In sum, strong
health messages led to a robust enhancement of inter-brain coupling as
measured by EEG-ISC.

3.2. Enhanced inter-brain coupling to strong messages during free viewing
and an effectiveness rating task

In a second step, we examined whether the pattern of enhanced ISC
for strong messages varied across viewing conditions, that is, free
viewing and an active rating task in which participants evaluated mes-
sage effectiveness. For each component, possible task and order effects
were assessed via four separate mixed repeated measures analyses of
variance (ANOVAs) with the within factors “Video Category” (strong vs.
weak) and “Condition” (free viewing vs. rating task), and the between
factor “Order” based on the sequence of the two conditions, which was
counterbalanced across viewers.

As shown in Fig. 2c, inter-brain coupling, as measured by the level of
ISC for the four components, was enhanced for strong compared to weak
messages during both task conditions (Main effects of “Video Category”:
F(1,30) ¼ 16.61 – 321.04; all p’s < 0.001, η2G ¼ 0.06 - 0.43; for details,
see Supplementary Table SR 2). The main effects of video category were
not qualified by any higher-order interaction in the separate ANOVAs of
C1, C2, and C3. For C4, the interaction of “Video Category x Condition x
Order” reached significance (F(1,30) ¼ 7.10, p ¼ .012, η2G ¼ 0.01).
However, two separate follow up-mixed repeated measures ANOVAs of
both the free viewing and the rating task condition data revealed only
significant main effects of video category (Free viewing: F(1,30)¼ 51.04,
p< .0001, η2G¼0.21; Rating task: F(1,30)¼62.89, p< .0001, η2G¼0.22).
No other significant effectwas found in these separate analyses. For C1 and
C2, level of ISC decreased from first to second viewing across both
task orders resulting in significant interactions of “Condition x Order”
(C1: F(1,30)¼ 46.55, p< .0001, η2G¼ 0.08; C2: F(1,30)¼ 11.80, p¼ .002,
η2G¼ 0.07). Overall, the degree of EEG-ISC prompted by strong messages
was consistently enhanced compared to weakmessages - during both free
6

viewing and the evaluation task. This pattern was especially pronounced
for components C1, C3 and C4. Moreover, to allow a comparison to pre-
vious research (Cohen and Parra, 2016; Dmochowski et al., 2014), an
additional analysis using the same statistical model but ISC summed
across the four components was computed which revealed similar results
(Supplementary Table SR 3).

3.3. Relation between EEG-ISC and fMRI signal

To identify candidate brain sources of the maximally correlated
components, we used the temporally resolved EEG-ISC responses to
model fMRI data obtained during viewing the same health messages.
Critically, EEG and fMRI data were recorded from two independent
audiences exposed to the same messages, so that data can be inte-
grated across groups (see Dmochowski et al., 2014; Haufe et al., 2018 -
for similar approaches). Specifically, the EEG-ISC time courses from
each of the four previously identified components were used as a
parametric regressor in separate GLM-analyses modeling the fMRI data
(see Fig. 1). In other words, we asked where in the brain the temporal
variation of EEG-ISC across the first audience tracked with
blood-oxygen-level-dependent (BOLD) signal in the second audience.

As shown in Fig. 3, the results of the four identified EEG components
reveal overlap, but they also show distinct patterns for each of the
components. The results show that all four components tracked with
BOLD signal in primary visual and auditory cortices as well as unimodal
and heteromodal associative cortices (e.g., Mesulam, 1998). Importantly,
significant relations between EEG-ISC and BOLD signal extended beyond
sensory-perceptual regions. Specifically, BOLD signal within the poste-
rior cingulate cortex (PCC) tracked with EEG-ISC of components C2 and
C4. Furthermore, signal in the insula and the precuneus was related to
EEG-ISC of components C3 and C4. Finally, EEG-ISC of component C4 was
additionally related to the fluctuation of BOLD signal within the anterior
cingulate (ACC), and dorsomedial prefrontal cortex (dmPFC). Previous
research related these higher-order brain regions to personal relevance,
affect and attentional processes (Etkin et al., 2011; Murray et al., 2012;
Qin and Northoff, 2011; Raichle, 2015; Schmitz and Johnson, 2007;
Shackman et al., 2011).

3.4. Correspondence between EEG-ISC and fMRI-ISC findings

In addition to providing information on the potential neural genera-
tors of EEG-ISC, the EEG-informed fMRI analysis allows to assess the
correspondence of our ISC results across two neuroimaging modalities.
To facilitate comparison, Fig. 4 enables to compare the current findings
to previous fMRI-ISC findings during processing the same strong and
weak health messages (Imhof et al., 2017). Similar to our previous work,
the neural regions that show a relation to the identified correlated EEG
components extended itself across the cortical hierarchy from “basic”
sensory-related to “higher-order” cortical regions (e.g., Mesulam, 1998).
When comparing the statistical maps of the two separate streams of an-
alyses, we find that more than 90% of the current findings of the
EEG-informed fMRI analysis revealed overlap with the fMRI-ISC findings
of the previous work. Given the cross-experimental nature of data
acquisition and analysis, marked parallels are found when comparing
fMRI-ISC analysis and possible neural generators of the correlated com-
ponents in the current data.

3.5. Relationship between EEG-ISC and change in drinking amount

In a first step, we determinedwhether therewas any change in alcohol
consumption following exposure to the health messages. At the group
level, an overall reduction compared to the baseline before exposure to the
health message was seen in amount and frequency of drinking within the
follow up questionnaire (Amount: t(30) ¼ 3.11, p ¼ .004, d ¼ 0.56; Fre-
quency: t(30) ¼ 3.00, p ¼ .005, d ¼ 0.54; N ¼ 31, paired samples t-tests,
two-sided, uncorrected - for details, see Supplementary Information,



Fig. 3. Results of EEG-ISC informed fMRI analyses reveal distinct regions
in which BOLD signal tracked with the ISC of correlated EEG components.
a) EEG-ISC fluctuations co-vary with BOLD signal in sensory-perceptual and
higher-order brain regions. Illustrations show results of GLM analyses in which
ISC time courses of the correlated components obtained in EEG analysis were
used as parametric regressors predicting BOLD signal (t-values, FWE corrected
for multiple comparisons, p < .05; 25 mm2 voxel contiguity). ACC ¼ Anterior
cingulate cortex, Aud ¼ Auditory cortex, dmPFC ¼ Dorsomedial prefrontal
cortex, Ins ¼ Insula, PCC ¼ Posterior cingulate cortex, Prec ¼ Precuneus, STG ¼
Superior temporal gyrus, Vis ¼ Visual system. All visualizations are shown on
Talairach-normalized anatomical renderings of the left hemisphere.

M.A. Imhof et al. NeuroImage xxx (xxxx) xxx
Table SR 5). With regard to the amount of drinking, participants on
average reported to drink 3 or 4 beverages per drinking event at followup,
Table 1
Results of Hierarchical Regression: Predicting Amount of Drinking at Follow Up using
Brain Coupling.

Step R2 Adj. R2 Res. DF F values

1: Drinking amount at Baseline .42 .40 29 20.86
2: Self-report .67 .60 25 9.95
3: Brain coupling C3 and C4 .76 .69 23 10.63
4: Brain coupling C1 and C2 .77 .68 21 7.99

Notes. R2 ¼Multiple R squared, Adj. R2 ¼ Adjusted R squared, Sig.¼ Significance. Sig
need to act, intentions & perceived health threat.
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corresponding to a lowering of half a scale point. Therewere no changes in
binge drinking or self-report measures probing alcohol consumption on a
weekly resolution, that is, the week prior to baseline compared to the
week prior the follow up questionnaire. Specifically, participants
consumed on average 8.32 standard beverages (SD ¼ 5.25) in the week
prior the baseline and 7.90 beverages (SD¼ 8.38) in the week prior to the
follow up questionnaire (t(30) ¼ 0.24, p ¼ .810, n.s. - see Table SR 5 for
details).

In a second step, we used linear regression to explore whether neural
measures of health message processing as well as self-reported risk per-
ceptions were related to changes in drinking behavior. Significant effects
were seen with regard to amount of drinking, but not for drinking fre-
quency. In a linear regression model, ISC averaged across strong health
messages for components C1 to C4, drinking at baseline, as well as self-
reported drinking-related worries, intentions, perceived need to act, and
perceived health threat were entered as independent variables, resulting
in a significant model for amount of drinking (F(9,21) ¼ 7.99, p < .0001;
adj. R2 ¼ 0.68). In this model, ISC as captured by components C3 and C4,
baseline drinking, and self-reported need to act, intentions, and
perceived health threat, were significant predictors of drinking at follow
up (p’s ¼ 0.03 to < 0.001; for details, see Supplementary Table SR 6).

Lastly, to determine whether neural measures can make a unique
contribution, we computed a hierarchical linear regression analysis.
First, we entered amount of drinking at baseline followed by worries,
need to act, intentions to change, and perceived health threat which
explained an additional 24.7% of variance (Fchange ¼ 5.74, p ¼ .003).
Entering ISC of components C3 and C4 in the next step explained an
additional 9.8% of variance resulting in a better model fit (Fchange ¼ 8.71,
p¼ .002 – see Table 1). Adding EEG-ISC of components C1 and C2 did not
explain additional variance.

4. Discussion

Health messages are critical for health promotion and disease pre-
vention, but only if they reach and positively engage their target audi-
ence. To achieve this at scale, however, messages must be able to attract
and sustain attention of the recipients – and collectively across large
audiences. Here, we presented members of a target audience with real-
life video health messages about risky alcohol use and assessed the col-
lective coupling across their brains during message exposure using inter-
subject correlation (ISC). We find that the strength of audience-wide ISC
during message receipt is associated with the strength of the messages,
that is, their perceived effectiveness. Our findings imply that the strength
of ISC within an audience can indicate whether a health message reso-
nates across receivers. Capturing these effects across the brains of an
audience may thus provide a promising tool to objectively quantify the
impact of mediated health messages and for studying the micro-level
processes in response to persuasive messages.

4.1. Strong health messages increase audience brain coupling

The main finding is that strong health messages increased inter-brain
coupling across the audience. When our test audience was exposed to
strong messages, the receivers’ brain responses became more closely
aligned, whereas messages that people evaluated as being less effective
Self-Report Measures Alone and then Combining Self-Report Measures with Inter-

Model sig. R2 change F change F change sig. AIC

8.435 ⋅ 10�5 56.42
2.498 ⋅ 10�5 .247 5.74 .003 ** 47.27
6.418 ⋅ 10�6 .098 4.57 .022 * 40.47
4.668 ⋅ 10�5 .010 0.46 .636 43.13

nificance codes: *** p< .001, ** p< .01, * p< .05. Self-report measures: Worries,



Fig. 4. Correspondence between EEG-ISC related to fMRI signal and fMRI-ISC findings from previous work. a) Results of EEG-ISC informed fMRI analyses
reveal regions in which BOLD signal tracked with EEG-ISC. Illustrations show results of GLM analyses in which ISC time courses of the correlated components obtained
in EEG analysis were used as parametric regressors predicting BOLD signal (t-values, FWE corrected). b) fMRI-ISC results from Imhof et al. (2017) obtained in an
independent participant sample that viewed the same video health messages. R-values obtained in fMRI-ISC analysis are overlaid onto the same anatomical rendering
for Strong (red) and Weak (blue) messages (FDR corrected). All visualizations are shown on a Talairach-normalized anatomical rendering of the left hemisphere. c) A
large portion of the voxels shown in the statistical maps depicted in a) reveals overlap with the voxels depicted in the statistical maps in b) - for details, please see
section 2.7).
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evoked more heterogeneous responses. This effect was found for all
identified components and corroborated across two experimental tasks.
Our findings are in line with a growing body of research that uses fMRI
and EEG to assess the neural base of audience engagement in response to
naturalistic stimuli, such as rhetorically strong speeches, engaging
movies, or narratives (Barnett and Cerf, 2017; Cohen et al., 2017; Cohen
and Parra, 2016; Hasson et al., 2010; Honey et al., 2012; Ki et al., 2016;
Lahnakoski et al., 2014; Schm€alzle et al., 2015; Silbert et al., 2014).
Importantly, the components C1, C3 and C4 found in the present work
closely resembled components obtained in previous studies using natu-
ralistic audio-visual stimuli, but different tasks, EEG-systems, and sensor
layouts (e.g., Cohen and Parra, 2016; Dmochowski et al., 2012). Recent
evidence suggests that correlated EEG components - similar to ISC in
fMRI (Schm€alzle et al., 2015) - can track attentional and behavioral
engagement in an audience (Cohen et al., 2017; Dmochowski et al., 2012,
2014; Ki et al., 2016). This extension of the ISC approach to EEG is
promising since it allows a more flexible measurement in real world
contexts and thus offers translational potential for neural measures as a
scalable assessment of the audience response to health media.
4.2. Using EEG-ISC to study real-life health media

While studying naturalistic stimuli increases ecological validity it also
raises the issue that real-life health messages may not only differ with
regard to content characteristics but also with regard to physical prop-
erties. To gain insights into this issue, we extracted changes in luminance,
optical flow and sound envelope for each of the videos and found that
strong and weak health messages did not significantly differ with regard
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to these features in the current study (see section 2.3). However, given
the multitude of possible physical features, only a systematic experi-
mental variation of physical and psychological features of messages can
solve this issue conclusively.

With respect to content-based characteristics, real-life messages often
differ along a number of variables such as message sensation value or
argument strength – which is also the case in the current sample of
messages (see section 2.2). More fine-grained analyses of health mes-
sages are needed to tackle the challenge of relating ISC-based neural
engagement metrics to dynamic message contents and tactics. Given the
excellent time resolution, EEG-ISC appears well-suited to identify crucial
elements of a message that drive collective audience responses. For
example, the proposed measure may answer on a scene-by-scene level to
what extent neural engagement is driven by fear appeals and dramatic
imagery, and also how these content characteristics interact with phys-
ical properties, such as stimulus dynamics or intensity. Moreover, recent
work linked think-aloud protocols captured immediately after message
exposure to brain activity (Pei et al., 2019) and a similar strategy would
be feasible for ISC-based approaches (cf. Dmochowski et al., 2012). We
anticipate that ISC could indicate if moments of a video or specific ele-
ments of the messages “got under the skin” of the recipients and predict
upcoming verbal elaborations by recipients that became affectively
engaged. Future research may now delve into the contents of messages
and examine how variations in the presented arguments or employed
message tactics affect the ISC-based engagement metrics. Overall, it may
be feasible to include EEG measures in the formative stage of health
campaigns to identify, design and pre-test elements of health messages,
as is already the case for eye-tracking to optimize spatial attention
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allocation (Lochbuehler et al., 2016).

4.3. EEG-ISC informed fMRI analyses reveal brain regions related to
correlated EEG components

In addition to providing a neural measure of audience engagement,
the integration of EEG-ISC and fMRI suggests that the correlated com-
ponents found in EEG data may tap into distinct functional brain systems.
The EEG-informed fMRI analyses identified several brain regions
involved in sensory and perceptual analysis, but also revealed the ante-
rior and posterior cingulate cortex (ACC & PCC), the dorsomedial pre-
frontal cortex (dmPFC) and the insula - regions, which are involved in a
broad array of functions relevant to successful messaging and persuasion.
These results align with the work of Dmochowski et al. (2014) who
similarly observed relations between EEG-ISC and BOLD signal for the
reception of commercials using an fMRI block-design within superior
temporal, inferior frontal and cortical midline regions. Importantly, a
robust differentiation of strong and weak health messages emerged in the
current study for ISC of components C3 and C4, components which the
EEG-fMRI correspondence analysis related to cortical midline regions
(C4) as well as to the insula and the precuneus (C3 & C4). Numerous fMRI
studies have linked these cortical midline regions to a broad set of pro-
cesses including assessments of personal relevance as well as social and
memory-related tasks, and affective evaluation (Apps et al., 2016;
D’Argembeau et al., 2010; Etkin et al., 2011; Murray et al., 2012; Qin and
Northoff, 2011; Raichle, 2015; Schmitz and Johnson, 2007; Shackman
et al., 2011). Furthermore, the insula and ACC have emerged as key
nodes in the so-called salience network, which is, together with the PCC,
supposedly involved in tuning attention to internal or external informa-
tion and shifting working-memory resources (Leech and Sharp, 2014;
Menon and Uddin, 2010; Raichle, 2015; Seeley et al., 2007). While
acknowledging the limits of reverse inference (Poldrack, 2006), the
picture that arises based on the current findings and previous work
(Imhof et al., 2017; Schm€alzle et al., 2013, 2015) is that during strong
messages, ISC across an audience is consistently enhanced across multi-
ple recipients, not only within stimulus-driven brain regions, but also
within regions related to higher-order processing - such as assessing
personal relevance, affective evaluation and attention.

4.4. Inter-subject correlation as a possible marker of message success

From a communication perspective, the correlated brain responses
exposed by our analyses represent the common effects of messaging, that
is, the degree to which a given message aligns neural processing across
multiple receivers. To state the obvious: without a message acting as an
“audience-aligner”, brain activity across persons is basically uncorrelated
(Hasson et al., 2004, 2008). Furthermore, when messages are unengag-
ing or compromised in their meaning, e.g., by presenting unintelligible
reversed speech to audiences, then correlated brain activity is relatively
weak and confined mostly to sensory areas (Honey et al., 2012;
Schm€alzle et al., 2015). Thus, we can think of the degree of
message-evoked ISC along a continuum ranging from unaligned to
strongly aligned (Hasson et al., 2004, 2008, 2010). On that view, strong
health messages were more effective in the sense that they prompted a
stronger shared signal in the audience. The EEG-informed fMRI analyses
implied that this effect is linked to self-relevance and attentional pro-
cesses. This finding is particularly promising because personal relevance
and the ensuing involvement or central processing represent key con-
structs in the persuasion literature (e.g., Greenwald and Leavitt, 1984;
Petty et al., 2009; Petty and Cacioppo, 1986). Along similar lines, mul-
tiple theories in health psychology and risk communication suggest that
conveying an authentic feeling of “being personally at risk” is central to
successful health messaging (Ferrer and Klein, 2015; Renner et al., 2015;
Slovic and Peters, 2006; Weinstein, 1989). Taken together, audience
brain coupling of EEG and fMRI can reveal if and how health messages
align and prompt shared signal across members of a target audience. By
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exploiting this ability, the strength of ISC may serve as a proximal marker
of health message success.

Identifying such markers of health message success can inform health
communication research focused on designing more effective messages.
For example, the present findings relate to a recent debate on the use-
fulness of perceived message effectiveness (PME) for selecting messages
that are likely going to be successful. In brief, PME-scales have been used
in formative research based on the assumption that they can serve as a
proxy for actual effectiveness (Dillard et al., 2007; Yzer et al., 2015).
However, recent work by O’Keefe (2019, 2018) argued that PME is not
demonstrably related to actual effectiveness in meta-analyses (but see
Cappella, 2018; Davis and Duke, 2018). Our results speak to this debate
insofar as they show that messages evaluated as high in perceived
effectiveness by the participants of our screening sample actually
prompted stronger ISC of EEG data in another, independent test audi-
ence. Furthermore, exploratory analysis showed that EEG-ISC was pre-
dictive of behavior change. Acknowledging that these findings await
replication by future research, it can be argued that messages that prompt
a stronger initial audience response are more likely to be successful
(McGuire, 2013) - whether in the participants who are being tested or in
new audiences, including the population level targeted by mass-media
campaigns (Dmochowski et al., 2014; Falk et al., 2015, 2016; Huskey
et al., 2017; Weber et al., 2014). Considering that mass media health
messages can reach large populations, even relatively small advantages
in audience engagement may lead to consequential differences in audi-
ence impact.

Demonstrating that inter-subject correlation can be reliably measured
with EEG is relevant for the issue of group and cultural differences in
designing health messages. Empirical evidence demonstrated that mes-
sage variables can interact with personal variables, such as issue
involvement, prior experience, or attitudes towards certain topics, and
this can cause differences in neural processing of health messages (Weber
et al., 2013, 2014). Given that EEG is comparatively cheap and can be
measured with mobile devices, EEG-ISC may provide means to better
assess the targeting of messages to different groups (e.g., Chua et al.,
2011; Chua et al., 2009), to make samples less “WEIRD” (Burns et al.,
2019; Henrich et al., 2010) and thus, on the long term more
generalizable.

4.5. Inter-subject correlation as a possible predictor of message effects

The ultimate goal of health communication is to influence health by
successfully informing and persuading people to reduce risky behaviors
or engage in preventive action. To help with this endeavor, the EEG-ISC
approach may offer a marker of messaging success (Dmochowski et al.,
2014). In the current study, EEG-ISC of components C3 and C4 was not
only related to higher-order brain regions but did also, in addition to
self-report measures, predict reductions in risky drinking. By contrast,
adding EEG-ISC of components C1 and C2, whose neural generators were
most likely located in brain regions devoted to sensory and perceptual
analysis, did not significantly improve prediction of behavior change.
Accordingly, these results support the idea that messages that promote a
sense of personal relevance, risk perception, or related psychological
processes appear related to the engagement of C3 and C4 and are espe-
cially apt to motivate behavior change. Indeed, several fMRI studies
suggest that message-evoked brain responses in mediofrontal regions are
associated with behavior change, e.g., in the context of smoking or
sunscreen use (Chua et al., 2011; Falk et al., 2010, 2011, 2015). Although
the current results are consistent with this work, we emphasize the need
for further research and replication using larger sample sizes. For
example, the different measures of alcohol consumption employed in the
current study revealed variance in the behavioral outcomes – possibly
due to differing temporal resolution of the measures or intra-subject
variability. In this respect, more fine-grained behavioral measures,
such as ecological momentary assessment could improve both the reso-
lution and the accuracy of assessing changes in alcohol consumption over
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time (e.g., Smith et al., 2017).
In general, however, the current approach reveals potential to eluci-

date how strong messages prompt changes - first, in receiver’s brains and
then in subsequent health behavior. This result also speaks directly to
recent work by Huskey et al. (2017) and Weber et al. (2014), who used a
brain-as-predictor approach to predict perceptions of message effective-
ness in aggregate audiences. Our study complements this work, first by
examining the effects of high and low PME messages on audience brain
responses, second by suggesting EEG-ISC as a new, versatile method, and
third by the result of the exploratory brain-as-predictor analysis. In sum,
the concerted use of self-report, behavioral measures and neural data
promises a window onto the pathways through which messages become
affectively charged, motivate preventive health action, and ultimately to
predict changes in behavior and thus, positive societal outcomes (e.g.,
Falk et al., 2010; Falk et al., 2015; Falk et al., 2016; Weber et al., 2018).
Although this theorizing appears plausible, we note that more work is
needed to reveal the functional significance of this putative marker of
collective engagement.

4.6. Correspondence between EEG- and fMRI-ISC

Beside identifying neural regions that are related to the success of
health messages, our analysis linking EEG-ISC to BOLD signal measured
in a second, independent target audience enables to replicate and vali-
date the measure with respect to previous findings. For example, primary
and secondary visual and auditory cortices were related to fluctuations in
ISC of EEG data. Especially with regard to C1, these findings agree with
previous work using purely auditory stimulation (Cohen and Parra, 2016;
Iotzov et al., 2017) and work relating fluctuations within the same
component to luminance changes in a video (Poulsen et al., 2017) -
replicating that both primary visual and auditory processing seem to
contribute to this component. Importantly, the findings of the
EEG-informed analysis revealed a broad overlap with fMRI-ISC of pre-
vious work in both sensory-perceptual and cortical midline brain regions
(see Fig. 4 and Imhof et al., 2017). However, because the data sets were
collected from different samples and not using simultaneous measure-
ments, we cannot definitely infer that EEG-ISC is originating from the
indicated brain regions. Future research collecting EEG and fMRI data
from the same participants would provide more conclusive evidence
regarding this issue. At the same time, however, the present analysis
based on independent samples precludes that relations between the two
measured modalities are the result of common physiological confounds
or artifacts unrelated to the stimuli, e.g., respiration or heartbeat. The
ability to integrate responses to the same set of messages across multiple
modalities offers a promising strategy not only for methodological inte-
gration (e.g., Haufe et al., 2018; Liu et al., 2017), but also replicates and
validates the findings of enhanced ISC for strong health messages across
two neuroscientific methods. This suggests that, irrespective of the
neuroscientific measure, neural signals are reliably entrained across
viewers by health messages. As different modalities capture independent
levels of information, this approach can boost our ability to identify
messages that are likely to be effective at scale.

4.7. Conclusions

In summary, the present findings demonstrate the potential of EEG-
based audience response measurement to differentiate between strong
and weak health messages. Beyond informing basic science questions
regarding the neurocognitive processes that mediate effective messaging
strategies, neural metrics of audience engagement could also be used to
select promising messages from a pool of candidates, or to predict impact
in audiences beyond the neuroscience laboratory. While not specifically
designed for predicting audience impact, the observation that the degree
of ISC captured by “higher-order components” was related to behavior
change seems noteworthy. Given that health messages are a key strategy
of public health prevention, developing neural measures as a proximal
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marker for health message success seems promising for a translation to
applied settings.
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